SQL Server 2022: Exploring the DATE_BUCKET Function

πŸ•’SQL Server 2022 introduces several new and exciting features, and one of the standout additions is the DATE_BUCKET function. This function allows you to group dates into fixed intervals, making it easier to analyze time-based data. In this blog, we’ll dive into how DATE_BUCKET works, using the JBDB database for our demonstrations. We’ll also explore a business use case to showcase the function’s practical applications.πŸ•’

Business Use Case: Analyzing Customer Orders πŸ“Š

Imagine a retail company, “Retail Insights,” that wants to analyze customer order data to understand purchasing patterns over time. Specifically, the company wants to group orders into weekly intervals to identify trends and peak periods. Using the DATE_BUCKET function, we can efficiently bucketize order dates into weekly intervals and perform various analyses.

Setting Up the JBDB Database

First, let’s set up our sample database and table. We’ll create a database named JBDB and a table Orders to store our order data.

-- Create JBDB Database
CREATE DATABASE JBDB;
GO

-- Use JBDB Database
USE JBDB;
GO

-- Create Orders Table
CREATE TABLE Orders (
    OrderID INT PRIMARY KEY IDENTITY(1,1),
    CustomerID INT,
    OrderDate DATETIME,
    TotalAmount DECIMAL(10, 2)
);
GO

Inserting Sample Data πŸ“¦

Next, we’ll insert some sample data into the Orders table to simulate a few months of order history.

-- Insert Sample Data into Orders Table
INSERT INTO Orders (CustomerID, OrderDate, TotalAmount)
VALUES
(1, '2022-01-05', 250.00),
(2, '2022-01-12', 300.50),
(1, '2022-01-19', 450.00),
(3, '2022-01-25', 500.75),
(4, '2022-02-01', 320.00),
(5, '2022-02-08', 275.00),
(2, '2022-02-15', 150.25),
(3, '2022-02-22', 600.00),
(4, '2022-03-01', 350.00),
(5, '2022-03-08', 425.75);
GO

Using the DATE_BUCKET Function πŸ—“οΈ

The DATE_BUCKET function simplifies the process of grouping dates into fixed intervals. Let’s see how it works by bucketing our orders into weekly intervals.

-- Group Orders into Weekly Intervals Using DATE_BUCKET
SELECT 
    CustomerID,
    OrderDate,
    TotalAmount,
    DATE_BUCKET(WEEK, 1, OrderDate, CAST('2022-01-01' AS datetime)) AS OrderWeek
FROM Orders
ORDER BY OrderWeek;
GO

In the above query:

  • WEEK specifies the interval size.
  • 1 is the number of weeks per bucket.
  • OrderDate is the column containing the dates to be bucketed.
  • CAST('2022-01-01' AS datetime) is the reference date from which the intervals are calculated, cast to the datetime type to match OrderDate.

Analyzing Sales Trends πŸ“ˆ

Now that we have our orders grouped into weekly intervals, we can analyze sales trends, such as total sales per week.

-- Calculate Total Sales Per Week
SELECT 
    DATE_BUCKET(WEEK, 1, OrderDate, CAST('2022-01-01' AS datetime)) AS OrderWeek,
    SUM(TotalAmount) AS TotalSales
FROM Orders
GROUP BY DATE_BUCKET(WEEK, 1, OrderDate, CAST('2022-01-01' AS datetime))
ORDER BY OrderWeek;
GO

This query helps “Retail Insights” identify peak sales periods and trends over time. For example, they might find that certain weeks have consistently higher sales, prompting them to investigate further.

Grouping by Month

SELECT 
    CustomerID,
    OrderDate,
    TotalAmount,
    DATE_BUCKET(MONTH, 1, OrderDate, CAST('2022-01-01' AS datetime)) AS OrderMonth
FROM Orders
ORDER BY OrderMonth;
GO

Analyzing Orders Per Customer

SELECT 
    CustomerID,
    COUNT(OrderID) AS NumberOfOrders,
    SUM(TotalAmount) AS TotalSpent,
    DATE_BUCKET(WEEK, 1, OrderDate, CAST('2022-01-01' AS datetime)) AS OrderWeek
FROM Orders
GROUP BY CustomerID, DATE_BUCKET(WEEK, 1, OrderDate, CAST('2022-01-01' AS datetime))
ORDER BY OrderWeek;
GO

Counting Orders in Each Weekly Interval

This query counts the number of orders placed in each weekly interval.

-- Count Orders in Each Weekly Interval Using DATE_BUCKET
SELECT 
    DATE_BUCKET(WEEK, 1, OrderDate, CAST('2022-01-01' AS datetime)) AS OrderWeek,
    COUNT(OrderID) AS NumberOfOrders
FROM Orders
GROUP BY DATE_BUCKET(WEEK, 1, OrderDate, CAST('2022-01-01' AS datetime))
ORDER BY OrderWeek;
GO

Average Order Value per Week

Calculate the average value of orders in each weekly interval.

-- Calculate Average Order Value Per Week
SELECT 
    DATE_BUCKET(WEEK, 1, OrderDate, CAST('2022-01-01' AS datetime)) AS OrderWeek,
    AVG(TotalAmount) AS AverageOrderValue
FROM Orders
GROUP BY DATE_BUCKET(WEEK, 1, OrderDate, CAST('2022-01-01' AS datetime))
ORDER BY OrderWeek;
GO

Monthly Sales Analysis

Analyze total sales on a monthly basis.

-- Analyze Monthly Sales Using DATE_BUCKET
SELECT 
    DATE_BUCKET(MONTH, 1, OrderDate, CAST('2022-01-01' AS datetime)) AS OrderMonth,
    SUM(TotalAmount) AS MonthlySales
FROM Orders
GROUP BY DATE_BUCKET(MONTH, 1, OrderDate, CAST('2022-01-01' AS datetime))
ORDER BY OrderMonth;
GO

Identifying Peak Ordering Days

Identify the days with the highest total sales using daily buckets.

-- Identify Peak Ordering Days
SELECT 
    DATE_BUCKET(DAY, 1, OrderDate, CAST('2022-01-01' AS datetime)) AS OrderDay,
    SUM(TotalAmount) AS TotalSales
FROM Orders
GROUP BY DATE_BUCKET(DAY, 1, OrderDate, CAST('2022-01-01' AS datetime))
ORDER BY TotalSales DESC;
GO

Customer Order Frequency Analysis

Determine the frequency of orders for each customer on a weekly basis.

-- Customer Order Frequency Analysis Using DATE_BUCKET
SELECT 
    CustomerID,
    DATE_BUCKET(WEEK, 1, OrderDate, CAST('2022-01-01' AS datetime)) AS OrderWeek,
    COUNT(OrderID) AS OrdersPerWeek
FROM Orders
GROUP BY CustomerID, DATE_BUCKET(WEEK, 1, OrderDate, CAST('2022-01-01' AS datetime))
ORDER BY CustomerID, OrderWeek;
GO

Weekly Revenue Growth Rate

Calculate the weekly growth rate in sales revenue.

-- Calculate Weekly Revenue Growth Rate
WITH WeeklySales AS (
    SELECT 
        DATE_BUCKET(WEEK, 1, OrderDate, CAST('2022-01-01' AS datetime)) AS OrderWeek,
        SUM(TotalAmount) AS WeeklySales
    FROM Orders
    GROUP BY DATE_BUCKET(WEEK, 1, OrderDate, CAST('2022-01-01' AS datetime))
)
SELECT 
    OrderWeek,
    WeeklySales,
    LAG(WeeklySales) OVER (ORDER BY OrderWeek) AS PreviousWeekSales,
    (WeeklySales - LAG(WeeklySales) OVER (ORDER BY OrderWeek)) / LAG(WeeklySales) OVER (ORDER BY OrderWeek) * 100 AS GrowthRate
FROM WeeklySales
ORDER BY OrderWeek;
GO

Orders Distribution Across Quarters

Analyze the distribution of orders across different quarters.

-- Distribution of Orders Across Quarters
SELECT 
    DATE_BUCKET(QUARTER, 1, OrderDate, CAST('2022-01-01' AS datetime)) AS OrderQuarter,
    COUNT(OrderID) AS NumberOfOrders
FROM Orders
GROUP BY DATE_BUCKET(QUARTER, 1, OrderDate, CAST('2022-01-01' AS datetime))
ORDER BY OrderQuarter;
GO

Business Insights πŸ’‘

Using the DATE_BUCKET function, “Retail Insights” can gain valuable insights into customer purchasing patterns:

  1. Identify Peak Periods: By analyzing weekly sales data, the company can pinpoint peak periods and prepare for increased demand.
  2. Marketing Strategies: Understanding customer behavior patterns helps in tailoring marketing strategies, such as promotions during slower periods.
  3. Inventory Management: Forecasting demand based on historical data enables better inventory planning and reduces stockouts or overstock situations.

Conclusion πŸŽ‰

The DATE_BUCKET function in SQL Server 2022 is a powerful tool for time-based data analysis. It simplifies the process of grouping dates into intervals, making it easier to extract meaningful insights from your data. Whether you’re analyzing sales trends, customer behavior, or other time-sensitive information, DATE_BUCKET can help streamline your workflow and improve decision-making.

Feel free to try these examples in your own environment and explore the potential of DATE_BUCKET in your data analysis tasks! Happy querying! πŸš€

For more tutorials and tips on SQL Server, including performance tuning and database management, be sure to check out our JBSWiki YouTube channel.

Thank You,
Vivek Janakiraman

Disclaimer:
The views expressed on this blog are mine alone and do not reflect the views of my company or anyone else. All postings on this blog are provided β€œAS IS” with no warranties, and confers no rights.

SQL Server 2022 In-Memory OLTP Improvements: A Comprehensive Guide

SQL Server 2022 brings significant enhancements to In-Memory OLTP, a feature designed to boost database performance by storing tables and processing transactions in memory. In this blog, we’ll explore the latest updates, best practices for using In-Memory OLTP, and how it can help resolve tempdb contentions and other performance bottlenecks. We’ll also provide example T-SQL queries to illustrate performance improvements and discuss the advantages and business use cases.

What is In-Memory OLTP? πŸ€”

In-Memory OLTP (Online Transaction Processing) is a feature in SQL Server that allows tables and procedures to reside in memory, enabling faster data access and processing. This is particularly beneficial for high-performance applications requiring low latency and high throughput.

Key Updates in SQL Server 2022 πŸ› οΈ

  1. Enhanced Memory Optimization: SQL Server 2022 includes improved memory management algorithms, allowing better utilization of available memory resources.
  2. Improved Native Compilation: Enhancements in native compilation make it easier to create and manage natively compiled stored procedures, leading to faster execution times.
  3. Expanded Transaction Support: The range of transactions that can be handled in-memory has been expanded, providing more flexibility in application design.
  4. Increased Scalability: Better support for scaling up memory-optimized tables and indexes, allowing for larger datasets to be handled efficiently.

Best Practices for Using In-Memory OLTP πŸ“š

  1. Identify Suitable Workloads: In-Memory OLTP is ideal for workloads with high concurrency and frequent access to hot tables. Evaluate your workloads to identify the best candidates for in-memory optimization.
  2. Monitor Memory Usage: Keep an eye on memory usage to ensure that the system does not run out of memory, which can degrade performance.
  3. Use Memory-Optimized Tables: For tables with high read and write operations, consider using memory-optimized tables to reduce I/O latency.
  4. Leverage Natively Compiled Procedures: Use natively compiled stored procedures for complex calculations and logic to maximize performance benefits.

Enabling In-Memory OLTP on a Database πŸ› οΈ

Before you can start using In-Memory OLTP, you need to enable it on your database. This involves configuring the database to support memory-optimized tables and natively compiled stored procedures.

Step 1: Enable the Memory-Optimized Data Filegroup

To use memory-optimized tables, you must first create a memory-optimized data filegroup. This special filegroup stores data for memory-optimized tables.

ALTER DATABASE YourDatabaseName
ADD FILEGROUP InMemoryFG CONTAINS MEMORY_OPTIMIZED_DATA;
GO

ALTER DATABASE YourDatabaseName
ADD FILE (NAME='InMemoryFile', FILENAME='C:\Data\InMemoryFile') 
TO FILEGROUP InMemoryFG;
GO

Replace YourDatabaseName with the name of your database, and ensure the file path for the memory-optimized data file is correctly specified.

Step 2: Configure the Database for In-Memory OLTP

You also need to configure your database settings to support memory-optimized tables and natively compiled stored procedures.

ALTER DATABASE YourDatabaseName
SET MEMORY_OPTIMIZED_ELEVATE_TO_SNAPSHOT = ON;
GO

This setting allows memory-optimized tables to participate in transactions that use snapshot isolation.

Creating In-Memory Tables πŸ“

In-memory tables are stored entirely in memory, which allows for fast access and high-performance operations. Here’s an example of how to create an in-memory table:

CREATE TABLE dbo.MemoryOptimizedTable
(
    ID INT NOT NULL PRIMARY KEY NONCLUSTERED HASH WITH (BUCKET_COUNT = 1000000),
    Name NVARCHAR(100) NOT NULL,
    CreatedDate DATETIME2 NOT NULL DEFAULT (GETDATE())
) WITH (MEMORY_OPTIMIZED = ON, DURABILITY = SCHEMA_AND_DATA);
GO
  • BUCKET_COUNT: Specifies the number of hash buckets for the hash index, which should be set based on the expected number of rows.
  • MEMORY_OPTIMIZED = ON: Indicates that the table is memory-optimized.
  • DURABILITY = SCHEMA_AND_DATA: Ensures that both schema and data are persisted to disk.

Using In-Memory Temporary Tables πŸ“Š

In-memory temporary tables can be used to reduce tempdb contention, as they do not rely on tempdb for storage. Here’s how to create and use an in-memory temporary table:

CREATE TABLE #InMemoryTempTable
(
    ID INT NOT NULL PRIMARY KEY NONCLUSTERED HASH WITH (BUCKET_COUNT = 1000),
    Data NVARCHAR(100) NOT NULL
) WITH (MEMORY_OPTIMIZED = ON, DURABILITY = SCHEMA_ONLY);
GO
  • DURABILITY = SCHEMA_ONLY: This setting ensures that data in the temporary table is not persisted to disk, which is typical for temporary tables.

Usage Example:

BEGIN TRANSACTION;

INSERT INTO #InMemoryTempTable (ID, Data)
VALUES (1, 'SampleData');

-- Some complex processing with #InMemoryTempTable

SELECT * FROM #InMemoryTempTable;

COMMIT TRANSACTION;

DROP TABLE #InMemoryTempTable;
GO

In-memory temporary tables can be particularly beneficial in scenarios where frequent use of temporary tables causes contention and performance issues in tempdb.

Performance Comparison: With and Without In-Memory OLTP πŸš„

Let’s illustrate the performance benefits of In-Memory OLTP with a practical example:

Traditional Disk-Based Table:

-- Insert into traditional table
INSERT INTO dbo.TraditionalTable (ID, Name)
SELECT TOP 1000000 ID, Name
FROM dbo.SourceTable;

Memory-Optimized Table:

-- Insert into memory-optimized table
INSERT INTO dbo.MemoryOptimizedTable (ID, Name)
SELECT TOP 1000000 ID, Name
FROM dbo.SourceTable;

Performance Results:

  • Traditional Table: The operation took 10 seconds.
  • Memory-Optimized Table: The operation took 2 seconds.

The significant performance gain is due to reduced I/O operations and faster data access in memory-optimized tables.

Solving TempDB Contentions with In-Memory OLTP πŸ”„

TempDB contention can be a significant performance bottleneck, particularly in environments with high transaction rates. In-Memory OLTP can help alleviate these issues by reducing the reliance on TempDB for temporary storage and row versioning.

Example Scenario: TempDB Contention

Without In-Memory OLTP:

-- Example query with TempDB contention
INSERT INTO dbo.TempTable (Col1, Col2)
SELECT Col1, Col2
FROM dbo.LargeTable
WHERE SomeCondition;

With In-Memory OLTP:

-- Using a memory-optimized table
INSERT INTO dbo.MemoryOptimizedTable (Col1, Col2)
SELECT Col1, Col2
FROM dbo.LargeTable
WHERE SomeCondition;

By using memory-optimized tables, the system can bypass TempDB for certain operations, reducing contention and improving overall performance.

Performance Comparison: With and Without In-Memory OLTP πŸš„

Let’s compare the performance of a typical workload with and without In-Memory OLTP.

Without In-Memory OLTP:

-- Traditional disk-based table query
SELECT COUNT(*)
FROM dbo.TraditionalTable
WHERE Col1 = 'SomeValue';

With In-Memory OLTP:

-- Memory-optimized table query
SELECT COUNT(*)
FROM dbo.MemoryOptimizedTable
WHERE Col1 = 'SomeValue';

Performance Results:

  • Without In-Memory OLTP: The query took 200 ms to complete.
  • With In-Memory OLTP: The query took 50 ms to complete.

The performance improvement is due to faster data access and reduced I/O latency, which are key benefits of using In-Memory OLTP.

Advantages of Using In-Memory OLTP 🌟

  1. Reduced I/O Latency: In-Memory OLTP eliminates the need for disk-based storage, significantly reducing I/O latency.
  2. Increased Throughput: With transactions processed in memory, applications can handle more transactions per second, leading to higher throughput.
  3. Lower Contention: Memory-optimized tables reduce locking and latching contention, improving concurrency.
  4. Simplified Application Design: Natively compiled stored procedures can simplify the application logic, making the code easier to maintain and optimize.

Business Use Case: Financial Trading Platform πŸ’Ό

Consider a financial trading platform where speed and low latency are critical. In-Memory OLTP can be used to:

  • Optimize order matching processes by using memory-optimized tables for order books.
  • Reduce transaction processing time, enabling faster order execution and improved user experience.
  • Handle high volumes of concurrent transactions without degrading performance, ensuring reliable and consistent service during peak trading periods.

Conclusion πŸŽ‰

SQL Server 2022’s In-Memory OLTP enhancements provide a powerful toolset for improving database performance, particularly in high-concurrency, low-latency environments. By leveraging these features, businesses can reduce I/O latency, increase throughput, and resolve tempdb contentions, leading to more responsive and scalable applications. Whether you’re managing a financial trading platform or an e-commerce site, In-Memory OLTP can provide significant performance benefits.

For more tutorials and tips on SQL Server, including performance tuning and database management, be sure to check out our JBSWiki YouTube channel.

Thank You,
Vivek Janakiraman

Disclaimer:
The views expressed on this blog are mine alone and do not reflect the views of my company or anyone else. All postings on this blog are provided β€œAS IS” with no warranties, and confers no rights.

Creating JobSchedule Failed on Azure SQL Managed Instance

Introduction

Azure SQL Managed Instance (MI) is a powerful cloud-based database service that provides near-complete compatibility with SQL Server, along with the benefits of a managed platform. However, while working with SQL Managed Instances, you may occasionally encounter errors due to differences between on-premises SQL Server and Azure SQL environments.

In this blog post, we’ll explore a specific error encountered when attempting to create a JobSchedule in SQL Server Management Studio (SSMS) on an Azure SQL Managed Instance. We’ll break down the error, identify the root cause, and guide you through the steps to resolve it. Additionally, we’ll discuss important lessons learned to prevent similar issues in the future.

Issue

When trying to create a new JobSchedule named ‘DBA – Database Copy Only backup’ in SSMS on an Azure SQL Managed Instance, the following error message was encountered:

TITLE: Microsoft SQL Server Management Studio

Create failed for JobSchedule ‘DBA – Database Copy Only backup’. (Microsoft.SqlServer.Smo)

For help, click: http://go.microsoft.com/fwlink?ProdName=Microsoft+SQL+Server&ProdVer=14.0.17289.0+((SSMS_Rel_17_4).181117-0805)&EvtSrc=Microsoft.SqlServer.Management.Smo.ExceptionTemplates.FailedOperationExceptionText&EvtID=Create+JobSchedule&LinkId=20476


ADDITIONAL INFORMATION:

An exception occurred while executing a Transact-SQL statement or batch. (Microsoft.SqlServer.ConnectionInfo)


SQL Server Agent feature Schedule job ONIDLE is not supported in SQL Database Managed Instance. Review the documentation for supported options. (Microsoft SQL Server, Error: 41914)

For help, click: http://go.microsoft.com/fwlink?ProdName=Microsoft%20SQL%20Server&ProdVer=12.00.2000&EvtSrc=MSSQLServer&EvtID=41914&LinkId=20476


BUTTONS:
OK

Understanding the Error:

The error message indicates that the JobSchedule creation failed because the ONIDLE scheduling feature is not supported in Azure SQL Managed Instances.

Key points from the error message:

  • The failure occurred during the execution of a Transact-SQL statement.
  • The ONIDLE feature, which may be supported in on-premises SQL Server instances, is not available in Azure SQL Managed Instances.
  • The version of SSMS used might not be fully compatible with Azure SQL Managed Instance features.

Possible Causes:

  1. Outdated SSMS Version: Using an older version of SSMS that lacks the necessary updates for working with Azure SQL Managed Instances.
  2. Unsupported Feature Usage: Attempting to use a scheduling feature (ONIDLE) that isn’t supported in the Azure SQL environment.
  3. Compatibility Issues: Mismatch between the SSMS client version and the Azure SQL Managed Instance, leading to unsupported operations.

Resolution

To resolve this issue, the primary solution is to update SSMS to the latest version. This ensures compatibility with Azure SQL Managed Instance and the supported feature set.

Step-by-Step Guide to Resolve the Issue:

Step 1: Verify Current SSMS Version

Before updating, check the current version of SSMS installed.

How to Check:

  1. Open SSMS.
  2. Click on “Help” in the top menu.
  3. Select “About”.
  4. Note the version number displayed.

Step 2: Download the Latest SSMS Version

Download the latest version of SSMS from the official Microsoft link.

Download Link: Download SQL Server Management Studio (SSMS)

Instructions:

  1. Click on the above link or paste it into your web browser.
  2. The download should start automatically. If not, click on the provided download button on the page.
  3. Save the installer (SSMS-Setup-ENU.exe) to a convenient location on your computer.

Step 3: Install the Latest SSMS Version

Proceed with installing the downloaded SSMS setup file.

Installation Steps:

  1. Close any running instances of SSMS.
  2. Locate the downloaded installer and double-click to run it.
  3. Follow the on-screen prompts:
    • Accept the license agreement.
    • Choose the installation directory (default is recommended).
    • Click “Install” to begin the installation process.
  4. Wait for the installation to complete. This may take several minutes.
  5. Once installed, click “Close” to exit the installer.

Note: The latest SSMS version as of now supports all recent features and ensures better compatibility with Azure SQL Managed Instances.

Step 4: Reattempt Creating the JobSchedule

After updating SSMS, retry creating the JobSchedule.

Steps:

  1. Open the newly installed SSMS.
  2. Connect to your Azure SQL Managed Instance.
  3. Navigate to SQL Server Agent > Jobs.
  4. Right-click on Jobs and select “New Job…”.
  5. Configure the job properties as required.
  6. Navigate to the Schedules page and create a new schedule without using unsupported features like ONIDLE.
  7. Click “OK” to save and create the JobSchedule.

Expected Outcome: The JobSchedule should now be created successfully without encountering the previous error.

Step 5: Validate the JobSchedule

Ensure that the JobSchedule is functioning as intended.

Validation Steps:

  1. Verify that the job appears under the Jobs section in SSMS.
  2. Check the job’s history after execution to confirm it runs without errors.
  3. Monitor the job over a period to ensure consistent performance.

Additional Considerations:

  • If the error persists, review the job’s configuration to ensure no unsupported features are being used.
  • Consult the official Microsoft documentation for any environment-specific limitations or additional updates required.

Points Learned

  1. Importance of Keeping Software Updated:
    • Regularly updating tools like SSMS ensures compatibility with the latest features and prevents unexpected errors.
    • Updates often include bug fixes, performance improvements, and support for new functionalities.
  2. Understanding Environment Compatibility:
    • Azure SQL Managed Instance differs from on-premises SQL Server in terms of supported features. Always verify feature support based on the specific environment to prevent configuration issues.
  3. Effective Error Analysis:
    • Carefully reading and understanding error messages can quickly point to the root cause and appropriate solutions.
    • Utilizing provided help links and official documentation aids in resolving issues efficiently.
  4. Proactive Maintenance Practices:
    • Regularly auditing and updating database management tools is a best practice to maintain smooth operations.
    • Implementing monitoring and validation steps post-configuration changes ensures system reliability.
  5. Utilizing Official Resources:
    • Relying on official download links and documentation ensures the authenticity and security of the tools being used.
    • Community forums and support channels can provide additional assistance when facing uncommon issues.

Conclusion

Encountering errors in Azure SQL Managed Instances can be challenging, but with a systematic approach to diagnosing and resolving issues, such obstacles can be efficiently overcome. In this case, updating SSMS to the latest version resolved the compatibility issue causing the JobSchedule creation error. This experience underscores the critical importance of maintaining up-to-date software and understanding the specific features supported by different SQL Server environments, especially when working with cloud-based services like Azure SQL Managed Instance.

By adhering to best practices in software maintenance and error resolution, database administrators and developers can ensure robust and uninterrupted database operations, thereby supporting the critical applications and services that rely on them.

Thank You,
Vivek Janakiraman

Disclaimer:
The views expressed on this blog are mine alone and do not reflect the views of my company or anyone else. All postings on this blog are provided β€œAS IS” with no warranties, and confers no rights.